ELBOW REHABILITATION

Keely Battaglini, PT, SCS, ATC
Courage Kenny Sports & Physical Therapy - Eagan

July 7, 2017

DISCLOSURE

• I have no disclosures

OBJECTIVES

• Attendees will be aware of research regarding physical therapy treatment of various elbow pathologies
• Attendees will understand various treatment techniques/theories for physical therapy management of lateral epicondylosis and medial elbow pain in overhead athletes.

Physical Therapy Management

• Elbow pain in overhead athletes
• Medial elbow pain/injuries
 • UCL
 • Little league elbow
• Posterior elbow pain/injuries
 • Valgus extension overload/Posteromedial impingement
• Lateral epicondylosis
Elbow Pain in Overhead Athlete

Little league elbow: Apophysitis

UCL

Valgus Extension Overload

Treatment of overhead athletes

- Prevention: pitch count; MLB pitch smart

<table>
<thead>
<tr>
<th>AGE</th>
<th>DAILY MAX (PITCHES IN GAME)</th>
<th>REQUIRED REST (PITCHES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 Days</td>
<td>1 Days</td>
</tr>
<tr>
<td>7-8</td>
<td>50</td>
<td>1-20</td>
</tr>
<tr>
<td>9-10</td>
<td>75</td>
<td>1-20</td>
</tr>
<tr>
<td>11-12</td>
<td>85</td>
<td>1-20</td>
</tr>
<tr>
<td>12-13</td>
<td>95</td>
<td>1-20</td>
</tr>
<tr>
<td>13-14</td>
<td>95</td>
<td>1-20</td>
</tr>
<tr>
<td>15-16</td>
<td>105</td>
<td>1-30</td>
</tr>
<tr>
<td>17-18</td>
<td>120</td>
<td>1-30</td>
</tr>
<tr>
<td>19-22</td>
<td>120</td>
<td>1-30</td>
</tr>
</tbody>
</table>
Prevention

Risk Factors for shoulder and elbow injuries in throwers:

Pitching/throwing too much:
- Pitching > 8 mos = 5X more likely to require surgery
- > 100 innings per year = 3.5X more likely to be injured
- High pitch counts
- Following recommendations reduces risk of injury by 50%
- Pitching for multiple teams
- Catching as 2nd position = 2.7X more likely to be injured
- Pitching on consecutive days = 2.5X risk of pain

Other factors:
- Pitching while fatigued
- Those who require surgery: 36X more likely to routinely pitch fatigued
- Pitching at higher velocities
- Pitching with GIRD

Prevention

• Prospective cohort study of 353 junior baseball players (6-12) with no h/o elbow pain
• Clinical exam, ultrasonography, measurements of B ROM of elbow flexion/extension, shoulder IR/ER, hip IR/ER. IR/ER strength of shoulder and scapular mm. Thoracic kyphosis angle in standing. Questionnaire.
• Followed for 12 months.
 - 78 players (22.1%) sustained medial elbow injury.
 - Age ≥9, pitcher, >100 throws per day, thoracic kyphosis angle ≥30°, elbow ext deficits ≥5° were significantly associated with medial elbow injury.

Prevention

• Prospectively measured ROM and strength on 101 HS pitchers
• 28 injuries (19 shoulder, 9 elbow)
 - Preseason supraspinatus weakness associated with increased risk of injury
 - Pitchers with no loss of IR increased risk compared to pitchers with ≥20 degree loss
 - Authors: inadequate prior exposure to pitching?

Prevention

- Prospectively looked at 296 professional pitchers over 8 years (505 examinations)
- 49 elbow injuries and 8 surgeries in 38 players
- NOT correlated to injury:
 - GIRD
 - GH ER insufficiency
- Increased risk for injury:
 - Deficits of > 5 degrees of total rotation (ER + IR) of throwing shoulder had 2.6X greater risk for injury
 - Deficits of ≥ 5 degrees of flexion on throwing shoulder had 2.8X greater risk for injury

Prevention

- Pre-season training program increased shoulder endurance while maintaining strength ratios and ROM throughout 20 week program
- 2 phase pre-season program
 - Strengthening of scapular, rotator cuff and forearm muscles that emphasized endurance over strength
 - Phase 1: weeks 1-10
 - Elastic resistance training twice a week
 - Phase 2: weeks 11-20
 - Weight room exercises twice a week
 - Machine and free weight
 - Through both phases:
 - 1 training session per week in sports medicine clinic with elastic resistance for shoulder/scapular muscles

(Moore SD, et al, Sports Health, 2013)

Prevention

- Posterior Shoulder Endurance Test (PSET) in repetitions:
 - Baseline: 30 ± 14
 - 4 weeks: 66 ± 26 *
 - 8 weeks: 80 ± 27 *
 - 20 weeks: 88 ± 36 *
 - * P < 0.001

(Moore SD, et al, Sports Health, 2013)

Treatment of Overhead Athlete

- We know that the load failure of the UCL is 34 Nm via cadaveric studies
- We also know that the forces during a pitch exceed that of the load failure (valgus torque reaching 64 Nm)
- Therefore, other factors must help reduce strain on these structures or we would tear UCL with each pitch
 - Kinetic Chain

©AllinaHealthSystem
Kinetic Chain

- Helps with load regulation
- Biomechanically efficient and optimal alignment for minimizing loads on the elbow
- Production of interactive moments to move and protect the elbow

Kinetic Chain

- Helps with load regulation
- In study of Olympic tennis players
 - Using less than 10 degrees of knee flexion in cocking phase of serve
 - Increased valgus load at elbow by 21% resulting in 73.9 Nm (above safe repetitive load level).

Kinetic Chain

Biomechanically efficient and optimal alignment for minimizing loads on the elbow.

- Example: Dropped elbow is considered the “kiss of death” during baseball pitching (elbow below shoulder height during acceleration phase).
- Pitching/throwing mechanics analysis

Kinetic Chain

Production of interactive moments to move and protect the elbow.

- 27 uninjured HS pitchers
- Looked at rotational ROM, peak isometric IR/ER strength and 3D pitching biomechanics
- Found inverse relationship between ER ROM and elbow adduction moment.
- Positive relationship between peak shoulder IR moment and peak elbow adduction moment
- Greater ER ROM may be protective of medial elbow injury
- Coupling between shoulder IR moment and elbow adduction moment

(Hurd WJ, J Athl Train, 2012)
Evaluation of Kinetic Chain

- **Evaluation of proximal factors**
 - Hip and leg
 - Balance/proprioception: can they perform SLS
 - Stability: can they perform SL squat or step down
 - Hip ROM
 - Trunk
 - Adequate ROM
 - Functional abdominal strength

- **Shoulder**
 - Posture and resting scapular/shoulder position
 - Scapular dyskinesis
 - Adequate upward rotation, posterior tilt, external rotation of scapula?
 - Good eccentric control?
 - Serratus and lower/mid trap strength and recruitment
 - Total arc/range of motion (ER + IR = TRM)
 - Shoulder flexion
 - Elbow extension
 - should all be within 5 degrees of contralateral side
 - RTC/Periscapular strength

Lateral Epicondylosis

- **Lateral epicondylosis**
 - 25-65 y/o with peak age: 42 years
 - ECRB 80% of time
 - Dorsal interosseous nerve entrapment (radial nerve)
 - Positive radial neurodynamic testing
 - Positive pain with resisted supination

- **Research: what works?**
 - Eccentrics
 - Deep transverse friction massage
 - Dry needling
 - Low level laser therapy
 - US/phonophoresis
 - Shock wave therapy
 - Multi-modal
Eccentrics

- Systematic review of RTC and CCT looking at eccentrics as treatment for lateral epicondylitis
- 12 studies met inclusion criteria
 - 3 were high quality
 - 7 were medium quality
 - 2 were low quality
 - 8 of the studies found that following treatment, all groups that included eccentric exercise reported decrease in pain, improvement in function, improvement in grip strength from baseline
 - 7 studies that compared groups that included eccentrics versus groups that excluded eccentrics found improvements in pain, function and/or grip strength
 - 1 low quality study looking at isolated effect of eccentrics found no significant improvement in pain compared with other treatments.

Deep Transverse Friction Massage

- Found 1 study on lateral epicondylitis that met criteria
 - 40 subjects with lateral elbow tendinitis and compared:
 - Deep TFM with US and placebo ointment (n = 11) versus US and placebo ointment (n = 9)
 - Deep TFM with phonophoresis (n = 10) versus phonophoresis only (n = 11)
 - No significant difference in 5 weeks for:
 - change in pain on VAS
 - grip strength
 - Function on VAS
 - Pain free functional index
 - Functional status

Dry Needling

- Four studies met inclusion criteria (2 were done on lateral epicondylitis)
 - Improvement in VAS of 34% (significant was > 25%) from baseline at 6 months
 - Improvement in VAS of 56% from baseline
 (Krey D, et al, Phys Sportsmed, 2015)

Low Level Laser Therapy

- Systematic review:
 - 5 trials of 904 nm lasers with doses from 0.5 to 7.2 Joules
 - Significantly improved pain relief and likelihood of global improvement compared with placebo
 - 3 additional RCT that used 904 nm laser
 - No benefit compared with comparator groups in the short term (comparison groups received active interventions, i.e. exercise)
 (Bjordal JM, et al, BMC Musculoskel Dis, 2008)
US/Phonophoresis

- US appears to be no more effective than placebo for pain relief or self-perceived global improvement in the short term.

Shock Wave Therapy

- 2005 Cochrane review looked at 9 placebo-controlled trials
 - SWT provides little or no benefit in reducing pain or improving function
 (Buchbinder R, Cochrane Database Sys Rev, 2005)
 - No difference in pain relief or function between SWT, US with friction massage and corticosteroid injection at any time
 (Gunduz R, et al, Clin Rheumatol, 2012)
 - No different to corticosteroid injection or autologous blood injections at improving pain or function at 12 weeks
 (Pturan KE, et al, Orthopedics, 2010)

Multi-modal

- Mulligan MWM and exercise
 - Pooled data (n = 205) revealed:
 - Physical therapy was superior to wait-and-see in providing a successful outcome in the short term (6-8 weeks).
 - At 52 weeks, there continued to be a significant (although small) benefit of physical therapy over wait-and-see in successful outcome.
 - Physiotherapy was similar to corticosteroid injection in successful outcome in short term.
 - Physiotherapy was superior to corticosteroid injection at 52 weeks for successful outcome.

(Coombes BK, et al, JAMA, 2013)
References

TO CONTACT ME

• Keely Battaglini, PT, SCS, ATC
 Keely.battaglini@allina.com
 612-775-2960

https://www.allinahealth.org

©AllinaHealthSystem